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CHAPTER 2 - POINT DIVISIONS

In this chapter we generalise the concept of group
divisinility by introducing the notion of a noint Aivision of a
1-structure. We predefine croun divisible Adesigns in terms of
point Aivisions, and useful results are obtaine? for group
Adivisgible Aesigns using the more general notiong (see, in
particular, Chanter 3 below).

In the first section vmoint Aivisions are defined an? some
basic results are ohtained. Section 2.2 mainly consists of
qeneralisations of Bnse and Connor's results for GD Aesigns to
structures admitting point divisions; the corresponding results
for GD desiens being obtained as corollaries to the more general
results.

In section 2.3 we peneralise SRGD desions to Semi-regular

Point Divisible (SRPD) Jdesions and analagous results are

ned:; necessary and sufficient conditions are also given for

He

hbta

o)

a SRPD design to be snen.

The fourth section indicates the links between point
divisions and tactical deemmnositisns, and, finally, in 2.5 we
consider 2-desisns whose duals admit point divisions, deriving
some necessary and sufficient conditions for a design to be a
stronecly resolvable 2-desion.

Throuchout this chapter we will assume that S is a
1-(v,k,r) structure and D is a 1-(v.k,r) design, unless otherwise

gtated.
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2.1 Definitions and Basic Results

A Point Divisicn (or just P Nivision) of §, is a partition

21""’Ed of the voints of S, such that the connection number of
two distinet points from classes Ps and zj depends only on the
choice of i and j and is denoted by lij‘ We will write L4

for |P;]. Then we have the following immediate generalisation

of Result 1.u4.1(31).

Lemma 2.1.1 If 21,...,gd is a point division of S, then
A
v = 2 25’
i=1 -

A point division is said to be trivial if v = 4 (i.e.
if every noint class eontains just one point); everv 1-structure

admits the trivial point division. A Constant Lambda Point

Division (or a CLP Nivision) of § is a non-trivial point

dAivision with a ceonstant X such that lii = A for every i with

L. > 1.
i
As previously, these Aefinitions are by no means standard.
Adhikary, in 1}, calls a structure admitting a non-trivial

. . .

P Division, "Generalised Group Divisible”, and Beker (see, for

instance, [ 8]) introduced the term noint Aivision originally to
describe what we call here a CLP Division.

Using our terminolosy, a Tactical Nivision of S is a
tactical decomnosition whose point classes form a CLP Division.

vision such that there exists

j3e

A Groun NDivision of S is a CLP D

some constant A’ (A #)) with Aii =" for every i,j (i*¥3j): and

then a @D desirn is just a 1-desisn which admits a group division.
Since any refinement of the partition P,,...,E, of a

P Nivision also forms a P Division we now introduce the concept

of maximality. If P4,...,P 15 2P Nivision of §, then it is

TS YT T T O A o L o T TR
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said to be maximal if the only P Division of 8 having 21""’Ed
as a refinement is Py,...,P, itself. Then immediately we have :

Lemma 2.1.2 A group division is a maximal point Aivision.

We now show

Lemma 2.1.3 Every 1-structure S has a unique maximal

P Nivision; (anart from relabelling of the
peint classes). |
Proof Clearly every 1-structure admits the trivial P Pivision
and so admits a maximal P Division.
Suppose Pys.-+sE, and Q5..+5Qy Aare maximal point divisions
of S. Then let Ry,...,R, be the partition of the points of §
formed by taking all the non-empty intersections of the form

B3Ny 3 (1<icd, 1<j<d ). Ry5...5R, is then a refinement of both

i

...,g' an- 91"°"9d’ and hence is a F Nivision »f S.

d
Suppose Ryse.:sRy is not maximal. Then there exists a

13

P Division S ,..:53¢ of 8§ having Ry,...,R, as a refinement, and
hence the point classes S, consist of unions of classes Bj’ and
f<e.  Every refinement of S;,...,3¢ is a P Division and so
(without loss of generality) we assume that gluzz, Ras Bu,...,ge
is a refinement of S,,...,S¢ and hence is a P Nivision of S.

1
Assume i%#i' and sunpose 21,...,Ed has connection numbers

Aitic = P.NQ. T = a0
In addition let R 2y gj and R, = Eur 95

Aij’ (1<1,3<d). Pick X € B4 and Y € R, an? consider any Z € EQ
for some 2 % i,i’. Since Ry € P; and R, € Py » the connection

numbers of X,Z and ¥,7Z are Aiz and Ai’z respectively. But

X, Y € By VYR, which forms a class of a P Nivision of S, and so

these connection numbers must be the same, i.e. liz zA.r, for

i

every & #i,i’.
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Now supprse |P.| > 1, i.e. suppose A;s is defined.  Pick

WEP,, WH#X Then *the connection numbers of X,W and Y,W are

A

and Aii' respectively. But since B, Y R, is a class of a

-1 2
NDivision the connecticn numbers must be equal, and so Aig TA

ii

hJ

ii' e
Similarly if |B:r| > 1 we see that Aiar = Ayar.

So the partition of the points of S nhtained from »1""’Ed
by takines the unien of gi and gi. as one class, and leaving the
other classes unchanged forms a P Nivision, contradicting the
assumption that Py,...,0, is maximal.

Similarly, if we assume that j % j', we can deduce that
gl,...,gdr is not maximal and again obtain a contradiction.

So we have shown that 31,...,Ee is a maximal P Nivision of S,

and since it is a refinement of both gl,...,gd and Q1,...,gd; s

we then have {B;,...,P 3} = {R4,...,R )} = {Qy,...,04}. ™

Remark From Lemma 2.1.2 we see that a group division of a

1-structure is unique. As stated above P NDivisions
are clearly not unique, (unless the only P NDivision admitted is
the trivial one); but below we show that for a certain class of

P Nivisions, a similar result to Lemma 2.1.2 Acoes hold.

We now give some elementary combinatorial identities for
P NDivisions.

Lemma 2.1.4 Sunrose S admits a P Nivisinn gl,...,gd, and

let Xqseee Xy he an arbitrarv labelling of the

blecks of S. If S%w z ]xuﬂxwﬂgil then for every i,j (1<i,
j<a) -
b .
(1) } sk =i




b .
LK) Umv u - - .
1) 1. Suu Sau T Rifytiy * A (tAs)e54
b b 5 2
(iii) cmp smu Sty T T Ag 5
b b . 3 9
: i =
and (iv) CWH WA Shu Sww = T Al
Proof Let A be an incidence matrix for S associated with the
point division Wuu...uWao i.e.
SN
Aq
>m
where A. is the 2. x b incidence
A = . i i
b matrix whose rows correspond to the
M» points of P. and whose columns
vQ. -
I

correspond to the blocks of S.

(i) Consider the matrix identity :-

. .T . .T
(3A5° = 1A 7).

iy = (s3q 83, o0 siy).

a

;3T = riT, and so 1A = rii’ = rby, and (i) follows.

.
1

(ii) Consider the matrix identity :~
e spin AT o ses a TaaT
AM-&.MVAP\/W_V = U-A\wnm.»\wu. VP .
T_ 2 5 3
. . _ i .
By above, (jA;)(jAs)" = cWH si, Squ -
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T ; . i
>o>o - y.. 4 3 nW 3
S it b
i i
m
KWMM J + Aﬁzywwvw if i =3 P
. e.e-&x e s g
JAADTT = * pwpuywu if i % 3
N?my:;?; Y if i = 3
_ i ii i ii .
(iii) Consider the matrix identity :
T3 = g DHaa™
( )
-1 i R |
®11 ®12 S1b m
_H_ m.u.wl AJUnl * 00 nu- m
A.7A, = 21 T22 “2b -
1 b
i i . )
. Sp1 ®b2 mg_
. .
b
. T .T i
So j(A,* AT = W 1 s .
i i uel weq1 uw
T 2
. . .. T = .
M>MH = ri, and so AP>MHVAH>w:V vk
follows.
b b . . > . b . b _i
(iv) § ] st s = si 783 =mre. J Suu
u=1 w=1l uuawWW =g gz W I uz1

(using part (i)

s and so

, and (ii)

follows.

ii)

———
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Lemma 2.1.5 Suppose S admits a P Divisien Pys-++sPq with
connection numbers Aij (1<i,j<d},. and S*

admits a P Division Bys.-+sB s Igj! = my with connection

numbers Pis (1<1,3<e). (We will use this notation throughout

for P Divisions of S%.) Then, if X102 ¥y

u
i - ) ;
of the blocks of B, and s( i yeur) = 1%, X, O Bsl>
F S rbanrabne ] -
A.. s s + (r-x..) s, 2+
=3 F J
1219 321 13 (ue) (ue) ™ (wf) (wf) 124 ii (ue) (wf)
{5
f k2 4 (muwi)puu2 if u=w,e=f
c J ) \
= jZ1 mjojupjw + 2 2kpuu+(mu-2)puu if u=w,e*f
i
]W i — - .F
{2kpuw+(mu 1)puupuw+(mw 1)pww°uw if u¥w
Proof

Sunpose A is an incidence matrix for S associated

with both P;,...,P; and ByseresBos Then consider the matrix

> =)
identity : (ATA) = AT(AAT)A.

- my ~--y‘<--m2 -3 e

T fx , 3
¥ X pllj
ml * . ! p .-
Yy ‘ 12
P v P11 K -
ATA = T i !k Pr9g
m2 : 0 i k‘_‘ - -
12 4pgp "k
¥ . S
2 B B
P ! |
L ‘ }

w-1

u-=i T ?
and so the ) m, + ¢, } m_ + f entry of (AA)
t=1

o

e
<

t=1

is a labelling

N

-t
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u-1 w=-1
(i.e. the entry in row ) m, + e and column } m, + £)
t=1 - t=1
¢ 2. .2 2
= < D - i = =
mmu Bunuc + k7 o+ ABc mvocc if u=w, e=f
j#u
S 2 2
Qmusunuc + 2kp ., ¥ ABCIMVDCC if u=w, etf
w*z
c
um» Buou:ouz * mkocz * AscupvvccUcz * ASzapvoSSOcz
j¥u or w
.

- J
TWP .svmqnntnvnun
{4,
7, |

~

‘S
H

]

h
-

« 910

e

\

s

"

S

i A o S ——— e W T ——— £
’
H
4
L
«

v

I

¢

{
N

where . = 1 ~A..
1 11

so AT(aaT)a = aTxa + aTva.
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o > J
1 1
| By
Let A = . as in the proof »f Lemma 2.1.4.
\Aq |
Then . N
Adsyuuv>p
(p- ;
YA = \r ymmv>w , and hence
rmﬁnyamv>m\
d
Tor - _ T
ATYA = Ampaw A;dAA
u-1 w1 T
and so the ] my+e, ] m+f entry of ATYA
t=1 t=1
g i
=L ) Suer ey
(4 A
M y . FH r\.’kn
jz1 1Ry Ry T .
where Qm b 18 the axb
i d ?
XA = ! ) yww Jo g >u matrix, every entry of
351 73 Py
: which is +1.
L2y e e B
j=1 4’73
. /
d a
T T
So A"XA = ) ] A.: A0 J A,
521 324 301 TRgAs 0T
u=z1 w-1 m
and the I myte, ] m+f entry of ATXA
t=1 t=1
) i ] T 1t
) .Mm uwpwwm S(ue)(ue)’ S(wF)(wf)® —ne result now
follows. *H

P




-3

*
.

Lemma 2.1.6 If S admits a P Division P o...,WQ, then

d
(1) uWH&u»Wu + Anwzpvyww = r(k-1) for every i (1<i<d).
NEY
If 5% also admits a P Division, B u...UMOv then :-
s
(ii) umpsunwW + (m;-1)p;; = k(r-1) for every i (i<i<ce) ;
j¥i
c ¢ o C 2
and (iii) Mmm um» mymspy s +wm95wﬁawnuvoww
j#1i
d d 2 d 2
= L. A "4+ Ro{2.~1)Ae &+ ~k).
Mmp ump a4 Mmp A T
3t
Proof (i) Let A be an incidence matrix for S, associated
. ( ,
with the P Division WHU...gW;u and let A = >HJ as above.
Ay
e

-
.

Then consider the matrix identity
. Ty _ ¢ T ’
1CAA;7) = (JADA;

1 3\ d
T . T : T
AAST = AgA; » and so j(AA;7) = umgp>u>w
T
Aoy g .
. = (] Byl ¥ (r-2,))3 .
i=1 -
T
r»a»w J
A = ki, and so (1A)2;T = kjA;" = kri, and (i) follows.
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(ii) Is just the Aual result to (i).

(iii) By Lemma 2.1.5
5 d .
&) (ue)+ EP 217540y (ue)

a d .
m .m »Mumacwvmcmvmﬁz
i=1

2 2
+ k7 o+ Aacipvocc .

C

i 2
IR
%

j=1
j¥u
Summing both sides over all blecks x , of S, we obtain :-
a d \.o ™ ) 3 /f
Aos S, % s
wmu uMH wumcmp mmu (uz) (ue) ACmuAcmvm
f o[ £ 1 s
+ (r-A..) s, 1 i
151 ii w/cnp es1 ACQVAcwv\
c o c
2 i 2 2
= T m. } mipss© +# bk o+ ) m,(m,-1)p..".
iz=1 *g=1 I izg * 0t
3*1

d d , o 4 , @ a
Mmp ﬁwwwwuywu+wmhwﬁpw-gvyww +uwmmwyww+d Mmmw-swuwwyww
j#i
C C c
- 2 i 2 2
"L QWHSMBQDHM * L mylmgDeg;" + bk
i

and using Corellary 1.1,2(i) and Lemma 2.1.1 , (iii) follows. H
Result 1.4.1 (ii) is an immediate corollary of (i). :

Remark
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Lemma 2.1.7 Suppose Py,...,P, is a P Division nof S, and

Bi""’Bc is a P Division of S*. Label the

points of P, : Psqs+++sP;, » and 'label the blocks of Bi :
- N i i

xji,...,x. . Suppose also that there are Bi('

) )()i]lts (,f
.-”.. lt '
:] J .

4 i '\ i o - d - . ) .d
21 incident with block xJt of Ej an Y(l blocks of 2] incident

s)j

with point Pis of Ri' (Note that if Ri""’gd and 51,...,20

form a tactical decomnosition of S, Bi(jt) = Bij and Y(is).= Yij

in the notatiecn of Sectinn 1.5, for every t and s.)

Then, for all chnices of P, and Xsgp 1T

c
wlewj Yeis)w F (k-r”‘ii"pjj)6

ol
RRELNIIS

1 if Pis is inecident with th ﬂ>

where § =
0 otherwise J
Proof Let A be an incidence matrix for S associated with

the P Divisions »f $§ and 8*. Consider the matrix identity

ACATAY = (AAT)A.

i~1 j=1 .
The ) 2..*S> ) m +*t entry of A(ATA)
w=1l w=1

c
= ] Puy Y(is)w * (K-pjj)s

w=1
i-1 3-1 T
and the I 2.+s, Zl m +t  entry of (AAT)A
=1 w=
A
= . . - . @ ; ¢ d L = £ l C . a
uzikulﬁu(jt) + (r All)é and the Lemma follows
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We now generalize Result 1.4.1 (iii),(iv) to obtain

results on the incidence matrices of 1~structures admitting

P Divisions.

Lemma 2.1.8 Suppose S admits a P Division Wpu...,WQ. Let

A be an incidence matrix for S associated with

T

mpu...,WQ. Then AA™ has among its eigenvalues rk and

r-A;; (1<i<d), with multiplicities at least 1 and L;-1 (1<izd)

respectively.
t
Proof By inspection, j and g (1<u<v-1; u# J

T

2. for any t)
1 J
with the appropriate eigenvalues. =H

Lde

are eigenvectors of AA

Corollary 2.1.9 Suppose D admits a P Division Wpu...oWQ.

Then >e> (where A is an incidence matrix for D) has

among its eigenvalues :- rk, d:yupv 6u>mmu v dn»aa with

multiplicities at least pvxunpu pw|pu cens Nalp.

Proof Since D is a 1-design r > yww for every 1i. Hence,

T

using the fact that AA™ and >H> have the same non-zero eigenvalues,

o

Lemma 2.1.8 gives the Corollary. H

Result 2.1.10 (Adhikary, [1]) Suppose S admits a P Division

Pys+++sBy. Let A be an incidence matrix for S.

Then :~

a
[aaT] = IB]. T (r-a , where B = (b,.) is a

i]

dxd matrix with vw@ = %
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2.2 Generalisations of some Results of Bose and Connor

We now generalise several well-known results on GD designs

to structures admittineg a P Division.

Theoren 2.2.1 If S admits a point division Wuu...uma then:-
5!
(1) (v=2:)rk > v § 2.X,. for every i (1<¢i<d); with
i = 424373 21z
j*¥i

equality for a given i, if and onlv if every block

of S contains equally many points of P,3; and

d
(ii) If &1 and P is such that A<avaww = v ) 2.
+

then HA»MA<, dvyww

"roof

(i) Using the notation of Lemma 2.1.4% :

2 i 2 242 ? i 2, 2, 2
Muhmccsdpwxvv = Mpmmccv su%nMACMHmccu\d + 79 “b/b

u= u=

9.2

s @
1 12

2 2

2 2 Ny
+nwhduywwvnmd 24 /b+r %5 /b (by Lemma 2.1.4(i)(ii))

g, (A5 -100,

-
1

;1) - _ca.u._.u: (by Corollary 1.1.2(i))

d
= 0. ((v-2)rk - v ] m_wf..,._v (hy Lerma 2.1.6(i))
e u"ul R
j#i
d
L.H.S. > 0 and so (v-£.)rk > <um»»“._y.ﬂ.
341
4 s
(v-2.)rk = v m»pu»wu if and only if sl = r&;/b for
$i

-~ (dalde

every u, and (i) follows.

P S A 3 e e
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(1ii) Firstly, V>0, since d>1. By assumption we have :

s
A<n»wvdw = <umupw»w¢v and by Lemma 2.1.6(i):
34
ad
2., = - ~ . .o . - .
wmp;,»Pu rk-1) - (2;-DA,. Hence £, (rk-vA,.)
j#1i
= <Aﬁnywwv. So, since hwwpu <nd|»MwV = 0 if and only
if dw;cyww = 0. But vr¥kr and hence we always have

<A%sywwv ¥ 0 # dxn<yww. Using this we have

L. = A<dc<ywwv\ﬁwwx<>wwu > 1, an4d since <A%'yw ) # 0,

i i

-
e

g
o
n
O
<
Ldeile
4 010,
=

i

= (v=2 ) o+ -y,

Ay -A<-bwvywwu.

a
(r-) ) (v-2.) = 2 m Ly
+

Ldel Jo
e i

.H.S, > 0 and (ii) follows. R

o

<|n¢vo, and so the

As Corollaries we have the following results of Bose and
Connor, originally stated in Chapter 1.

Result 1.4.3 If D is GD then rk>vi'

2
—

a
Proof From (i) above : (v-f:)rk > v } 2
%

But for a GD design, nwnn, »wm
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Result 1.4.5 If D is GD then D is SRGD if and only if every

block is incident with precisely k/d points of

each point class.

Proof D is SRGD if and only if rk=vA’ (by definition), and

applying (i), the result follows. "

Result 1.4.6 If D is SRGD then X&)’

Proof Immediate from (ii) above. o

Because of the analagous natures of Theorem 2.2.% and
Results 1.4.5 and 1.4.6 we make the following definition.
If P 2e++9P4 is a P Division of §, then P e eesPy is said to be a

Semi-regular P Division (SRP Division) if

A
A<|p¢vdw = v M 2 for every i, (i1<i<d). As we shall see
$3
in section 2.3, this generalizes the notion of semi-regular

group divisibility. We now have :-

Lemma 2.2.2 If mpu...uwA is a SRP Division of S it is maximal

ard hence unique.

Proof By Theorem 2.2.1 (i), if bpv...,wm is a P Division

having va...vv ags a refinement, then Q is a SRP Division.

l@, lvu.ocoowmm

By Lemma 2.1.6(i) and the definitions of SRP Division we see that

»w u <mwlxwwvxhuxl<ywwv for every 1(1<i<d), i.e. the size of a

point class in a SRP Division of S depends on the connection

number of two points within it. Hence {Qq,...,Q.} ={P;s...,P,}.

So muu...uWa is maximal, and hence unique by Lemma 2.1.3. n

Because of Lemma 2.2.2 we call a structure admitting a

SRP Division, Semi-regular point divisible (SRPD), and if S is

SRPD, we will always assume (unless otherwise stated) that
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gl,...,gd with connection numbers A is the SRP Division

=

3
associated with S.

Renark Any 2-design admits a P Division with & = 1, and

clearly this is the unique SRP Divisinn of a 2-design;

d

(V-Qi) = 0 = Z zjx{j, and so equality holds trivially in
21 i

1

Theorem 2.2.1(i).

Theorem 2.2.3 Suppose D admits a P Division Ri""’gd‘

Then :-
(i) b+ d>v + 13

is a CLP Division and b + 4 = v + 1, then
D* is a 2-(b,r,p) design, where p = k-r+i;
and (iii) Suppose there exist constants Ai,lz with Aii =11 or 12

for every i with £i>1 and also suppose D has two

intersection numbers. Then if b + d = v + 1, D* is a
PBD(23}.

Proof (1) Since D is a 1-design, r>A,. for cvery i, and
so, by Lemma 2.1.8, AAT has v-d+1 distinct eigenvectors
with non-zero eigenvalues. So v-d+1 < rank AAT = rank A
< b3 hence (i).
(11) TIfb =v - d + 1, then, by Corollapy 2.1.9, ATA
has eigenvalues rk, ”"All’ r—lzz,...,r-ldd with
nultinlicities : 1,21—1,£2-1,...,£d-1. Hence if
Pys-++sBy is a CLP Division, then ATA!iL'has just one

eigenvalue : r-X, and so, by Lemma 1.2.4, D* is a

2-(b,r,p) design and k-p = r=-A,




-2
(iii) As for (ii), if b = v-d+1l, then ATAlifhas just two
eigenvalues:‘r-.\1 and  r-i,. Hence, since D* has
+wo connection numbers, (iii) follows from Lemma 1.4.11, =
Remark A stronger result than (ii) exists, see Theorem 2.5.7
below.
Finally, we obtain a bound on the intersection numbers of
certain designsadmiting a P Division, generalizing a result on
SRED designs due to Saraf, [37j.

Lemma 2.2.4 If S admits a P NDivision 21”"’Ed; then, with

+he notation of Lemma 2.1.u :-

b a .
= i gl -Asy l H ;
tzl Syt Swt ° 21 leki. sl S * X (r-A,:) si for every
i
um’ﬂghw@);vmaesmq=]gp&A £1Sm’.
Proof Consider the trivial P Division of $*, and then, by
Lemma 2.1.5, we have :=-
a 5! ot b
J 2 . \’
Y M. ST 53 2 (p-2 )sl = § s.,8 . *+t< Kk if u = w )
121 j=1 13 “uuTww uy =1 ut wt !
t$u
tHw
2ksuw if u # wj
The Lemma now follows. H
Lemma 2.2.5 If S admits a P Division Pys..-5B4 then, with
the above notation :
b d 5
2 3
Y (s, ,-8 )" = 1 Z Ny (s 251 sl .* si s )
=1 ut “wt 321 3= uu uu W rma

- i _oel aei
+ Z (r 11)(S 255wt Sora )

for every u,w (1<u,w<b).




b 2 b ) b b
Proof tZi(sut-swt) = t§1sut - 2 t§1SUtSWt + tzisWt , and,
applying Lemma 2.2.4%, the result follows.H
Theorem 2.2.6 Suppose D admits a CLP Division 21""’£d’

and, (using the above notation), X, 2%, are

two distinct blocks satisfying s% = Séw for every i (1<i<d).

Then s, 2 k~pr+x with equality if and only if Seu © Stuw for

every t (l<tew,td¥u,tdw).

Proof Lemma 2.2.5 gives :~

b 2 ad d 3
- - -9al ia

Z (Sut Swt) i§1 321 13(Suu uu 2s;, S vt Sime® ww)

a .
- i -9l 4gi
+ (r=-2) ig (s 258 +st.

i

= 2(pr-1)(k-s ), since stu = s for everv 1i.
b 9 5
Hence t21(SUt Swt) > Q(r-l)(k-suw)~2(k—suw)
++
t*w
= Z[éuw~(k-r+x))(k~suw).

L.H.S. > 0 and k >S w? by definition of design.

Hence s 2> Oc=r+) ).

n
]

uw

S

"
ut wt for every t.

s

k-r+\ if and only if R.H.S. = 0, i.e. if and only if



T
As a Corollary we have -

Result 2.2.7 (Saraf, [37}) If D is SRGD, and X, 2%, are two

distinct blocks of D, then :~ s >k - r + 2

with equality if and only if S+ = S

+ for every t (t¥u or w).

wt

2.3 Semi-regular Point Divisible Structures

We now consider SRPD structures and generalize some results

for SRGD designs.

Lemma 2.3.1 If S is SRPD then b + 4 > v + 1.
Proof By Theorem 2.2.1 v > A,s for every i (1<i<d); and
so, by Lemma 2.1.8, ..H has v-d+1 distinct eigenvectors with

non-zero eigenvalues, where A is an incidence matrix for S.

Hence v-d+1 < rank >>H = rank A < b, !

Remark Note that this is a stronger result than Theorem

2.2.3(i), since there we needed to assume r-\ > 0 for every i.

ii

Lemma 2.3.2 If S admits a P Division wpv....ma and

for every i¥u for some u, then P g...uWQ

is a SRP Division.

Proof By Theorem 2.2.1(i), every block is incident with

re./b blocks of P. (for every i*u). Hence every block is

d

incident with Xk - J rf;/b = re /b (by Corcllary 1.1.2(1)
1

u

s fde

"
and Lemma 2.1.1) blocks of P . 8o using Theorem 2.2.1(i) the

Lemma follows. *®




T

Lemma 2.3.3 If S is SRPD then :-

(2. i& Jr o+ &.A@.luv»..

(i) »ww = m@ﬁnw|mv il Jl for every i,i;

and (ii) there exists a A’ such that A, 13 = A' for every

i,y (i¥3).
Proof Let A be an incidence matrix for S associated with
WHQ...UW&. wcd

i-1 j-1 4

+ .M &C.vf &M > < ..M m.c > &w_ > « ...M bﬁuv

Woo OO ) h\ .0 &- OD.-. Olcn.n.l.‘- ) lnpa QO ) o
= ( ] - 30 ] )

Then f.. A = 8 for every i,j, since every block is incident
with precisely %wwxv points of Pss by Theorem 2.2.1(i).

Hence £,. >>H = 0 for every i,j. From this we may derive the

—1]

following identities :-

(p+(a=100;5) 70, =2 13 m6+Ap.»Hv» 3/047hgss anddyy = gy for
every w (w¥i,w¥j), and the Lemma follows. =
Remark Because of (ii) above we will denote the connection

numbers of a SRPD 1-structure by X,.(12i<d) and A

Corollary 2.3.4 If S is SRPD then »ﬁ < A' for every

i (1<icd).

Proof By Theorem 2.2.1(ii) :
- 14 . - . -
ﬁwM W V\A<os ) > Ags. yw@ = X for every 1,7 (i¥3j)
3#i

by Lemma 2.3.3, and so (\' M xuuxacc»wv > yww. Applying Lemma

ke

}Js

2.1.1. the Corollary follows. n
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Theorem 2.3.5 If gi,...,gd is a SRP Division of S, then the
following are equivalent :- |
(1) Py5...,P; is a semi-regular group division.

(ii) There exists a constant 2 such that kii = A for every i;

(iii) |p;] = 2 = v/d for every i (1<izd).
Proof (i) = (ii) : By definition.

(ii) = (iii) : From Theorem 2.2.1(ii) :-
Ly = v(r-xii)/(rk—vxii) = v(p=-2)/(rk-vr); i.e. zi is a
constant for every i. Hence &, = v/d = 2.
(iii) = (i) : By Lemma 2.3.3(i) 21,...,Ed'is a CLP DNivision, and
hence a group division; (by Lemma 2.3.3 (ii)). Finally
Pys++.sP4 is semi-regular by Result 1.4.5. *H
Remark There do exist SRP Divisions 21""’Ed of S which

are not group divisions. See, for example, Adhikary, [ 1), p.81,

example 1.

2.4 Point Divisions and Tactical Decompositions

Recall from section 2.1, that a Tactical Division is simply
a Tactical Decomposition whose point classes form a CLP Division.
To study Tactical Divisions we first require the following

combinatorial identities.

Result 2.4.1 If T(S) is a tactical decomposition of S, then :-
c
(i) ) Yy; = v, for every i (1<i<d);
321 M
4
(ii) } B.. = k, for every j (1<j<e) s
Py — -
i=1
(iii) /Q«iYij = ijij’ for every i,j (1_<_i_<_d,1§_j_<_0).
Pronf Trivial. "

| S T o SN | NI 1 R TP St T P ERCP I
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Lemmas 2.4.2 and 2.4.3 and Theorem 2.4.% below are due to
Beker, [61; we present them here using new proofs based on
results obtained above. The proof of Theorem 2.4.4 is essentially
the same as that used in proving Theorem 1 of Beker, [ 5].

Lemma 2.4.2 Suppose T(S) is a tactical decomposition of §S.

If the point classes of T(S) form a P Division of

S, then

c
(i) I m
u=1

= R.0:A

uBiquu 125243 + 2i(r-1ii)6.. for every

13

i,j (1<i,3<4);
C
(i1) v

=R A.. + (r—kii)ﬁij for every i, (1<i,j<d);

e
(iii) é Yiuyju/mu = Aij + (rwlii)dijlzi for everv

1,3 (1<i,i<d).

Dually, if the block classes of T(S) form a P Division of S*, then:-

d
1 . - - = HR Y L3 Ml e - PR L f
(iv) uzlﬂuYUIYuj mymsP s + ml(k 011)613 or every

d
: = MaPss kePss )8, . f i3 i,3<e);
(v) uzlﬁuivuj_ miPyg * (k 011)613 for every i,j (1<i,j<c);

8l
i - = . (k=p..)8../m.
(vi) uziﬁuiﬁuj/ﬁu pi] + (k% pll)Gl]/ml for every

i,j (1<i,j<e).

Where Gij = the Kronecker NDelta.
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Proof (i) Immediate from Lemma 2.1.4(ii).
(ii) and (iii) follow from (i), using Result 2.4.1(iii).

(iv) - (vi) are just the dual results of (i) - (iii). *H

Lemma 2.4.3 I£ T(D) is a tactical division of D, and x,y are

two distinct blocks from the same block class of
T(D), then |x"y| > k-r+), with equality if and only if

IxNz| =|ynz| for every block z (z#x or y).

Proof Imnediate from Theorem 2.2.6. =
Theorem 2.u4.u4 Suppose T(D) is a tactical division of D. Then

(1) Db+d > v+c;
(ii) The following are equivalent

(a) b+d = v+e (i.e. T(D) is strong);

(b) The block classes of T(D) form a point division

of D*;

(c) Every two distinct blocks from the same block
class of T(D) intersect in k-r+A points.
d

o]
i§1 jZ1einij

Proof (1) Set S

—————

d
T (2 A+ (r-2))
i=1 1

By Lemma 2.4.2 (ii), S

= dv + (r-A)d (by Lemma 2.1.1).

< sP)

Pick xj € B, for every j (1<j<e), and count triples (x,xJ

(where PIx,PIxj and xegi) tc obtain :

Z gxnxj'

B.
1 €3,

wn
1
no~10

3

PR
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e
Set p = xNx. 1) /(b~-c).
SAPRECD

x$ X..
X3

So (k-p)c + pb = S.

So, using Corollary 1.1.2(i), we have
(k=p)(b-c) = (r-A){v-A). (%)
All the terms in (*) are positive (since D is a design), and,

by Lemma 2.4.3, p > k-r+A. Hence b-c > v-d and (i) follows.

(ii) (1) # (¢) follow immediately from Lemma 2.4.3.

(a) @ (¢) : By (%), b+d = v+c if and only if
P = k=r+d; i.e. if and only if !xﬂxj] =z k-r+\A for everv

x € gj - {xj}, i.e. (by Lemma 2.4%.3) if and only if |x"y| = k-r+r

for every pair of distinct blocks x,y in the same bhlock class
of T(D). R
Remark Theorem 2.4.4 is essentially equivalent to Results
1.5.1 and 1.5.2.

Finallv we have a generalisation of a result of Shrikhande
and Raghavarao, [ 44}, on "»~resolvable" SRGD designs.

Theorem 2.4.5 If D admits a strong tactical division T(D)

with point classes Py,...,P, and block classes

B

_1,...,§c; then the following are equivalent :-

(1) Pl""’—d is a semi-regular group division of D;

(ii) P

;1""’2d is a SRP Division of Dj;

(iii) Bi,...,§ is a semi-regular group division of D¥*;

(iv) Bys.++»B is a SRP Division of D*.
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Proof (ii) = (i) Immediate from Theoren 2.3.5,

(i) = (iv) By Result 1.4.5 every block contains the same
number (= k/d) of points from each point class, and clearly every
point class contains v/d points.

T(D) is a tactical decomposition and so, by Result 2.4.1(iii),

Ziyij = ijij for every 1i,]. Hence inj/d = kmj/d, i.e.

Yij = kmi/v which is independent of the choice of i. (iv) then
follows immediately from Theorem 2.2.1(i).
(iv) = (iii) and (iii) = (ii) follow by dual arguments. n

As a corollary we have

Result 2.4.6 (Shrikhande and Raghovarao,l 4u4l, Corollary 6.1)

An o-presolvable SRGD design D, is affine #-resolvable if and
only if b-c = v-d, (where ¢ is the number of classes in the
r-pyesolution ca=r).

Proof Recall from Section 1.5 that a design D is affine
a-resolvable if and only if D* is SRGD, and an o-resolution is
a tactical decomposition with one point class such that

Y,:. = o for every 3.

13
If the classes of the group division of D are 21""Bd and

the classes of the a-resolution are 31,...,50, then 31,...,gd

and By,...,B  form a tactical decomposition T(D) of D (using
Result 1.4.5). So b-c = v-d if and only if T(D) is strong (by
definition) if and only if By,...,B, forms a P Division of D*
(using Theorem 2.u4.%) if and only if §1,...,§c is a SRP Division

of D* (by Theorem 2.2.1(i)), i.e. if and only if By,...,B, is a

semi-regular group division of D (by the above theorem). n
Remark So Result 2.4.6 essentially states that (i) and (iii)

hold if and only if (i) and (iv) hold in Theorem 2.4.5.

;— 1 G n oo o bR
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2.5 2-Designs with Divisible Duals

To study 2-designs whose duals admit P Divisions, we first

state :

Result 2.5.1 (Majumdar, [ 321) If D is a 2-design and x,y are
two distinet blocks of D, then [xMy] > k-r+i,

with equality if and only if |x7z| = |ynz| for every block

z(z¥x or )

We now give some definitions from Beker and Haemers, [7].
If D is a 2-design and x,v are two blocks of D, we define x n v
if and only if x = y or |x"y| * k-r+A. Then, by Result 2.5.1,
~ is an equivalence relation on the blocks of D. The partition

of the blocks into equivalence classes is called a maximal

decomposition of D, and any refinement of this partition is called

a decomposition of D. Also, if everv class of a decomposition

contains the same number of blocks, then the decomposition is
said to be regular.

It is straightforward to verify that if D is a 2-design, then
91"'°’5c is a P Division of D* if and only if 21""’Ec is a
decomposition of D, and in this case Ei""’gc is a CLP Division
of D*.  Such designs have been studied extensively in [7].

We call a 2-design Quasi-symmetric if it has precisely two

intersection numbers : p,p’ , say (p<p').

Lemma 2.5.2 If D is a 2~design and A is an incidence matrix

T
for D, then A"A has eigenvalues : rk, r-A and 0

with multiplicities 1, v=-1 and b-v.

Proof Immediate from Result 1.2.3(i) and Lemma 1.2.4. u
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Using Lemmas 1.4.11 and 2.5.2 we immediately have :

Result 2.5.3 (Shrikhande and Bhagwandas, [ 45} : Goethals and

Seidel, [201)

The dual of a quasi-symmetric 2~design is a PBD(2); or,
equivalently, the block graphs are strongly regular.

We now reconsider Theorem 2.2.3(ii). As mentioned abhove,
if D is a 2-design and D* admits a P Division El""’Ec’ then
By»>++-»B, is a decomposition, and hence a CLP Division with
p = k=pr+i.

Result 2.5.4 (Beker and Haemers, [7]) If D is a 2-design

and By,...,B_ is a decomposition of D, then:-
ms = 'Ej‘ < b/(b=v+1); with equality for every j

if and only if B,,...,B, form a resolution of D.

As a corollary we have -

Corollary 2.5.5 If D is a 2-design and 31’°"’§c is a

decomposition of D with ¢ = b-v+1, then 51,...,50 forms a strong
resolution of D.

c c
Proof Consider } (b/(b-v+1)-m:) = b =Y m. = 0
- j=1 ) j=1 !

(since c = h=-v+1). But every term on the L.H.S. is non-negative

by Result 2.5.4, and so ms = b/(b-v+1) for every j. Hence, by

Result 2.5.4 Ri,...,gc forms a resolution of D, which is strong

—

by definition. n

Using this corollary in conjunction with an earlier result.

we now have

| e eas w b hieie s E tie g o el e el b s i
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Theorem 2.5.6 If_gl,...,gc is a decomposition of a 2-design

D, then v+c > b+l with equality if and only

if gi,...,gc forms a strong resolution of D.

Proof Tmmediate from Theorem 2.2.3(i) and Corollarvy 2.5.5. ™
Remark This is a stronger result than a similar Theorem of

Beker and Haemers, [7]. They prove the same result with the

added assumption that Ei""’ﬁc is regular.

Using this result in conjunction with Theorem 2.2.3(ii), we
have the following generalisation of a similar result for SRGD
designs.

Theorem 2.5.7 If P P. is a CLP Division of D and

1’...,‘—d

b+d = v+1, then D* is a 2~-(b,r,k-r+)) design

and Py,...,F; forms a strong resolution of D*.

Proof D* is a 2-(b,r,k-r+A) design by Theorem 2.2.3(ii), and
the Theorem follows by Theorem 2.5.6. n
As an immediate corollary we have :-

Result 2.5.8 (Saraf, { 371) If D is SRGD and b = v-d+1 then

D* is a 2-design.
Finally we extend a result due to Beker and Haemers, [71.
Inl7], Lemmas 5.2 and 5.3 establish the equivalence of (i),(ii),
(1ii),(iv) below.

Theorem 2.5.9 If D is a Quasi~symmetric 2~design with

intersection numbers p,p’ (p<p’ ), then the

following are equivalent :-

(i) D is strongly resolvable;

(ii) p = k-v+r;
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(1i3) o' = K2/v;
(iv) G(B,p) = T'(eym), for some c,m;
(v) D* is GD;
(vi) D* is SRGD;
(vii) D* is SRPD;
(viii) D* admits a P Division with b+d = v+l.
Proof (i) = (ii) Immediate from Results 1.5.3 and 2.5.1.
(ii) = (v) Consider the maximal decomposition By,...,B, of D.

Clearly 41""’§c is a group division of D*, and (v) follows.

(i) =(iii) Immediate from Results 1.5.3 and 2.5.1.

(iii) = (iv) By Lemma 1.2.10(3i)
ATA = o' J + (k=p' )T - (p' =-p)T, where T is .an adjacency

matrix of G(B,p). From Lemma 2.5.2 T has eigenvalues

eq =((k=p' ) - (rk=bp' )} /(p' =p)3 0, = (k-p' Y/ (o' =-p) and

9, ((k=p") = (-2} /(p" =p). But o' = x2/v and so 9y = 045

i.e. G(B,p) r(e,m) by Result 1.2.8.

i

(iv) = (v) Trivial.
(v) = (vi) Label the points of D : Pl""’Pv’ and label the
block classes of the group division of D¥ : §1,...,§c. Then

suppose that P, is incident with Y33 blocks of Ej‘ Lemma 2.1.7%

gives :-

e
[ [ - .
Ak = p w§1yiw + (p-p )Yij + (k-r+A-p)8§ for everv i,j

(1<i<v;1<i<e). By Result 2.8.1 p = k-r+X, and we have

Ak = o' v 4+ (p-p')'y]._i (using Result 2.%.1)
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i.e. Yii = (p'r«kk)/(d-*p), and so evepry point is incident

with the same number of blocks of each block class, and so, by
Result 1.4.5, D* is SRGD.
(vi) = (vii) Trivial.

(vii) = (viii) Let Pqys>+++sB4q be the SRP Division of D*. By

Theorem 2.2.1(i), 21,.

..,gd forms a resolution of D, which is
strong by Theorem 2.4.4 and hence b+d = v+1,

(viii) = (i) The P Division is a CLP Division

by Result 2.5.1 and (i) follows from Theorem 2.5.7. n

Remark 1. Thus all quasi-symmetric 2-designs with block graph
I'(c,m) have been characterised. Goethals and Seidel in [ 20}
obtain similar results for quasi-symmetric designs with block
graphs the ladder graph and the complement of the ladder graph.
John [25] and Goethals and Seidel [29] have also shown that the

block graph of a quasi-symmetric design can never be the lattice

graoh Lz(n) or its complement.

Remark 2. Theorems 2.5.6, 2.5.7 and 2.5.9 provide necessary and
sufficient conditions for a design to be stronglv resolvable.
Further results of this type are Result 1.5.3 and theorems of

Shrikhande and Raghavarao, | 44} and Shah, [ 39].




